Faculty Profile

Dr. Amer Rasheed

Assistant Professor

Department Of Mathematics

Dr. Amer Rasheed received his M Phil degree in applied mathematics from Quaid-e-Azam University Islamabad and PhD degree from the National Institute of Applied Sciences (INSA) Rennes France. He worked as a Lecturer in INSA, France for two and half years and taught several courses in engineering programs. His specialization is the Numerical & theoretical Analysis and Simulations of the partial differential equations arising in different fields of applied sciences using Finite element Methods.

    • Article
      • Rasheed, A. .(2015). Numerical study of a thin film flow of fourth grade fluid . International Journal of Numerical Methods in Heat and Fluid Flow , ELSEVIER
      • Rasheed, A. .(2015). Numerical study of two dimensional unsteady flow of an anomalous Maxwell fluid . International Journal of Numerical Methods in Heat and Fluid Flow , Elsevier
      • Rasheed, A. .(2015). Numerical analysis of an isotropic phase-field model with magnetic-field effect . Comptes Rendus Mathématique, Academy of Sciences, Series-I, Paris, France , Elsevier Masson SAS , pp. 219–224
TitleSemesterCode
Numerical AnalysisSpring Semester 2014-151402
Calculus-IFall Semester 2015-161501
Ordinary Differential EquationsFall Semester 2015-161501
Numerical AnalysisSpring Semester 2015-161502
Advanced Numerical AnalysisSpring Semester 2015-161502
Ordinary Differential EquationsSpring Semester 2015-161502
Doctoral Thesis ResearchSummer Semester 2015-161503
Calculus-IFall Semester 2016-171601
Doctoral Thesis ResearchFall Semester 2016-171601
Master's Thesis IFall Semester 2016-171601
Numerical AnalysisSpring Semester 2016-171602
Advanced Numerical AnalysisSpring Semester 2016-171602
Ordinary Differential EquationsSpring Semester 2016-171602
Doctoral Thesis ResearchSpring Semester 2016-171602
Master's Thesis IISpring Semester 2016-171602
Calculus-ISummer Semester 2016-171603
Doctoral Thesis ResearchSummer Semester 2016-171603
Calculus-IFall Semester 2017-181701
Finite Element MethodsFall Semester 2017-181701
Introduction to Finite Element MethodsFall Semester 2017-181701